Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Clinics ; 76: e2052, 2021. tab, graf
Article in English | LILACS | ID: biblio-1153974

ABSTRACT

OBJECTIVES: Single nucleotide variants (SNVs) are the most common type of genetic variation among humans. High-throughput sequencing methods have recently characterized millions of SNVs in several thousand individuals from various populations, most of which are benign polymorphisms. Identifying rare disease-causing SNVs remains challenging, and often requires functional in vitro studies. Prioritizing the most likely pathogenic SNVs is of utmost importance, and several computational methods have been developed for this purpose. However, these methods are based on different assumptions, and often produce discordant results. The aim of the present study was to evaluate the performance of 11 widely used pathogenicity prediction tools, which are freely available for identifying known pathogenic SNVs: Fathmn, Mutation Assessor, Protein Analysis Through Evolutionary Relationships (Phanter), Sorting Intolerant From Tolerant (SIFT), Mutation Taster, Polymorphism Phenotyping v2 (Polyphen-2), Align Grantham Variation Grantham Deviation (Align-GVGD), CAAD, Provean, SNPs&GO, and MutPred. METHODS: We analyzed 40 functionally proven pathogenic SNVs in four different genes associated with differences in sex development (DSD): 17β-hydroxysteroid dehydrogenase 3 (HSD17B3), steroidogenic factor 1 (NR5A1), androgen receptor (AR), and luteinizing hormone/chorionic gonadotropin receptor (LHCGR). To evaluate the false discovery rate of each tool, we analyzed 36 frequent (MAF>0.01) benign SNVs found in the same four DSD genes. The quality of the predictions was analyzed using six parameters: accuracy, precision, negative predictive value (NPV), sensitivity, specificity, and Matthews correlation coefficient (MCC). Overall performance was assessed using a receiver operating characteristic (ROC) curve. RESULTS: Our study found that none of the tools were 100% precise in identifying pathogenic SNVs. The highest specificity, precision, and accuracy were observed for Mutation Assessor, MutPred, SNP, and GO. They also presented the best statistical results based on the ROC curve statistical analysis. Of the 11 tools evaluated, 6 (Mutation Assessor, Phanter, SIFT, Mutation Taster, Polyphen-2, and CAAD) exhibited sensitivity >0.90, but they exhibited lower specificity (0.42-0.67). Performance, based on MCC, ranged from poor (Fathmn=0.04) to reasonably good (MutPred=0.66). CONCLUSION: Computational algorithms are important tools for SNV analysis, but their correlation with functional studies not consistent. In the present analysis, the best performing tools (based on accuracy, precision, and specificity) were Mutation Assessor, MutPred, and SNPs&GO, which presented the best concordance with functional studies.


Subject(s)
Humans , Computational Biology , Mutation, Missense/genetics , Virulence , Polymorphism, Single Nucleotide , Sexual Development , Mutation
2.
Chinese Journal of Medical Genetics ; (6): 74-77, 2021.
Article in Chinese | WPRIM | ID: wpr-879527

ABSTRACT

OBJECTIVE@#To explore the genetic basis for a child with clinically suspected 3-methylcrotonyl-coenzyme A carboxylase deficiency (MCCD).@*METHODS@#Genomic DNA was extracted from peripheral blood samples of the proband and her parents. Whole exome sequencing was used to screen pathogenic variant in the proband. Suspected variant was verified by Sanger sequencing. Impact of the variant on the structure and function of protein product was analyzed by using bioinformatic software.@*RESULTS@#Sanger sequencing showed that the proband has carried homozygous missense c.1342G>A (p.Gly448Ala) variant of the MCCC2 gene, for which her mother was a heterozygous carrier. The same variant was not detected in her father. The variant was predicted to be pathogenic by PolyPhen-2 and Mutation Taster software, and the site was highly conserved among various species. Based on the American College of Medical Genetics and Genomics standards and guidelines, the c.1342G>A (p.Gly448Ala) variant of MCCC2 gene was predicted to be likely pathogenic(PM2+PP2-PP5).@*CONCLUSION@#The homozygous missense variant of the MCCC2 gene c.1342G>A (p.Gly448Ala) probably underlay the molecular pathogenesis of the proband. Genetic testing has confirmed the clinical diagnosis.


Subject(s)
Child , Female , Humans , Male , Carbon-Carbon Ligases/genetics , Mutation, Missense/genetics , Pedigree , Urea Cycle Disorders, Inborn/genetics
3.
Braz. j. med. biol. res ; 54(11): e11396, 2021. graf
Article in English | LILACS | ID: biblio-1339444

ABSTRACT

Current understanding of the genetic factors contributing to the etiology of non-syndromic craniosynostosis (NSC) remains scarce. The present work investigated the presence of variants in ALX4, EFNA4, and TWIST1 genes in children with NSC to verify if variants within these genes may contribute to the occurrence of these abnormal phenotypes. A total of 101 children (aged 45.07±40.94 months) with NSC participated in this cross-sectional study. Parents and siblings of the probands were invited to participate. Medical and family history of craniosynostosis were documented. Biological samples were collected to obtain genomic DNA. Coding exons of human TWIST1, ALX4, and EFNA4 genes were amplified by polymerase chain reaction and Sanger sequenced. Five missense variants were identified in ALX4 in children with bilateral coronal, sagittal, and metopic synostosis. A de novo ALX4 variant, c.799G>A: p.Ala267Thr, was identified in a proband with sagittal synostosis. Three missense variants were identified in the EFNA4 gene in children with metopic and sagittal synostosis. A TWIST1 variant occurred in a child with unilateral coronal synostosis. Variants were predicted to be among the 0.1% (TWIST1, c.380C>A: p. Ala127Glu) and 1% (ALX4, c.769C>T: p.Arg257Cys, c.799G>A: p.Ala267Thr, c.929G>A: p.Gly310Asp; EFNA4, c.178C>T: p.His60Tyr, C.283A>G: p.Lys95Glu, c.349C>A: Pro117Thr) most deleterious variants in the human genome. With the exception of ALX4, c.799G>A: p.Ala267Thr, all other variants were present in at least one non-affected family member, suggesting incomplete penetrance. Thus, these variants may contribute to the development of craniosynostosis, and should not be discarded as potential candidate genes in the diagnosis of this condition.


Subject(s)
Humans , Child , Craniosynostoses/genetics , Transcription Factors/genetics , Base Sequence , Family , Cross-Sectional Studies , Mutation, Missense/genetics , DNA-Binding Proteins/genetics
4.
Chinese Journal of Medical Genetics ; (6): 1352-1355, 2020.
Article in Chinese | WPRIM | ID: wpr-879497

ABSTRACT

OBJECTIVE@#To explore the genetic basis for a pedigree affected with X-linked recessive mental retardation Claes-Jensen type.@*METHODS@#Genomic DNA was extracted from peripheral blood samples of the patient, his parents (phenotypically normal) and two elder brothers with similar clinical manifestations. Whole exome sequencing was carried out for the proband, and the result was verified by Sanger sequencing.@*RESULTS@#The proband was found to harbor a hemizygous c.1565C>T missense variant in exon 11 of the KDM5C gene. The transition has resulted in replacement of serine by phenylalanine at position 522 (p.Ser522Phe). Sanger sequencing showed that the patient's two elder brothers and mother carried the same variant, which was predicted to be probably damaging by SIFT, PolyPhen2 and Mutation_Taster. The three affected brothers presented with similar clinical phenotypes characterized by mental retardation, speech delay, behavioral problem, self-limited epilepsy responsible to medication, short stature and microcephaly. The mother only had mild cognitive impairment and learning disability. The same variant was not found in their father and was unreported previously.@*CONCLUSION@#The c.1565C>T (p.Ser522Phe) of the KDM5C gene probably underlay the X-linked recessive mental retardation Claes-Jensen type in this pedigree.


Subject(s)
Aged , Female , Humans , Male , Histone Demethylases/genetics , Mental Retardation, X-Linked/pathology , Mutation, Missense/genetics , Pedigree , Phenotype , Exome Sequencing
5.
Yonsei Medical Journal ; : 341-344, 2018.
Article in English | WPRIM | ID: wpr-713188

ABSTRACT

Olmsted syndrome (OS) is a rare congenital skin disorder characterized by severe palmoplantar and periorificial keratoderma, alopecia, onychodystrophy, and severe pruritus. Recently, pathogenic ‘gain-of-function‘ mutations of the transient receptor potential vanilloid 3 gene (TRPV3), which encodes a cation channel involved in keratinocyte differentiation and proliferation, hair growth, inflammation, pain and pruritus, have been identified to cause OS. Due to the rarity, the pattern of inheritance of OS is still unclear. We report a case of OS in a 3-year-old Korean girl and its underlying gene mutation. The patient presented with a disabling, bilateral palmoplantar keratoderma with onychodystrophy. She also exhibited pruritic eczematous skin lesions around her eyes, ears and gluteal fold. Genetic analysis identified a heterozygous p.Gly568Val missense mutation in the exon 13 of TRPV3. To our knowledge, this is the first case of OS in the Korean population showing a missense mutation p.Gly573Ser.


Subject(s)
Child, Preschool , Female , Humans , Abnormalities, Multiple/genetics , Base Sequence , Heterozygote , Keratoderma, Palmoplantar/genetics , Lipid Droplets/ultrastructure , Mutation, Missense/genetics , Skin/pathology , Syndrome , TRPV Cation Channels/genetics
6.
Braz. j. med. biol. res ; 51(5): e6632, 2018. graf
Article in English | LILACS | ID: biblio-889075

ABSTRACT

The aim of this study was to find related pathogenic genes in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy in (CADASIL)-like patients. The direct sequencing and high-throughput multiplex polymerase chain reaction (PCR) was performed to screen for related genes. The clinical and imaging data of a CADASIL-like patient (the pro-band) and his family members were collected. At first, the known hereditary cerebral vascular genes of the pro-band were screened with direct sequencing to find candidate gene mutations. High-throughput multiplex PCR was then used to analyze the single nucleotide polymorphism of the candidate gene in the family members. The results showed that there was missense mutation of the high temperature requirement protease A1 (HTRA1) gene in the pro-band, which may be a pathogenic factor according to the biological software analysis. The following SNP results revealed that the other family members also had the HTRA1 gene mutation. Thus, the CADASIL-like family disease may be caused by heterozygous HTRA1 gene mutation, which leads to autosomal dominant hereditary cerebral small vessel disease.


Subject(s)
Humans , Male , Female , Adult , Mutation, Missense/genetics , CADASIL/genetics , High-Temperature Requirement A Serine Peptidase 1/genetics , Pedigree , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Multiplex Polymerase Chain Reaction , Genotype , Heterozygote
7.
Indian J Dermatol Venereol Leprol ; 2015 Jul-Aug; 81(4): 385-387
Article in English | IMSEAR | ID: sea-160059

ABSTRACT

Pachyonychia congenita (PC) is a rare genetic disorder which is inherited in an autosomal dominant pattern. We report a sporadic novel H1 mutation in the KRT6A gene (c. 428G>A/p. Ser143Asn) in a Chinese infant patient. The mutation is concurrent with a single-nucleotide polymorphism and resulted in a serine for asparagine substitution in H1 subdomain of KRT6A chain next to the rod domain. The infant showed the classic symptoms of pachyonychia congenita. Conclusion: The heterozygous missense mutation c. 428G > A/p.Ser143Asn in KRT6A exon 1 may cause severe disease


Subject(s)
Female , Humans , Infant , Keratin-6/genetics , Mutation/genetics , Mutation, Missense/genetics , Pachyonychia Congenita/epidemiology , Pachyonychia Congenita/genetics
8.
Indian J Dermatol Venereol Leprol ; 2015 Jan-Fer ; 81 (1): 16-22
Article in English | IMSEAR | ID: sea-154999

ABSTRACT

Background: Xeroderma pigmentosum (XP) is an autosomal recessive genetic disorder characterized by cutaneous and ocular photosensitivity and an increased risk of developing cutaneous neoplasms. Progressive neurological abnormalities develop in a quarter of XP patients. Aim: To study the clinical profile and perform a mutation analysis in Indian patients with xeroderma pigmentosum. Methods: Ten families with 13 patients with XP were referred to our clinic over 2 years. The genes XPA, XPB and XPC were sequentially analyzed till a pathogenic mutation was identified. Results: Homozygous mutations in the XPA gene were seen in patients with moderate to severe mental retardation (6/10 families) but not in those without neurological features. Two unrelated families with a common family name and belonging to the same community from Maharashtra were found to have an identical mutation in the XPA gene, namely c.335_338delTTATinsCATAAGAAA (p.F112SfsX2). Testing of the XPC gene in two families with four affected children led to the identification of the novel mutations c.1243C>T or p.R415X and c.1677C>A or p.Y559X. In two families, mutations could not be identified in XPA, XPB and XPC genes. Limitation: The sample size is small. Conclusion: Indian patients who have neurological abnormalities associated with XP should be screened for mutations in the XPA gene.


Subject(s)
Adolescent , Adult , Child , Family/epidemiology , Female , Founder Effect , Humans , India/epidemiology , Male , Mutation/analysis , Mutation/genetics , Mutation, Missense/genetics , Neurologic Manifestations , Xeroderma Pigmentosum/epidemiology , Xeroderma Pigmentosum/genetics , Xeroderma Pigmentosum/pathology , Xeroderma Pigmentosum Group A Protein/genetics
9.
Arq. bras. endocrinol. metab ; 58(7): 772-775, 10/2014.
Article in English | LILACS | ID: lil-726263

ABSTRACT

Maturity Onset Diabetes of Young (MODY) is a heterogeneous group of monogenic disorders that result in β-cell dysfunction, with an estimated prevalence of 1%-2% in industrialized countries. MODY generally occurs in non-obese patients with negative autoantibodies presenting with mild to moderate hyperglycemia. The clinical features of the patients are heterogeneous, depending on the different genetic subtypes. We pretend to report a case of MODY type 2 caused by a novel de novo CGK mutation, highlighting the importance of the differential diagnosis in pediatric diabetes. A 13-year-old, healthy and non-obese girl was admitted for investigation of recurrent hyperglycemia episodes. She presented with persistent high levels of fasting blood glycemia (> 11.1 mmol/L) and had no familial history of diabetes. The blood glucose profile revealed an impaired fasting glucose of 124 mg/dL (6,9 mmol/L) with a normal oral glucose tolerance test. Fasting insulinemia was 15 mg/dL (90.1 pmol/L), HOMA-IR was 3.9 and hemoglobin A1c was 7.1%. Pancreatic autoantibodies were negative. Genetic testing identified a novel missense heterozygous mutation in exon 5 of GCK gene c.509G > T (p.Gly170Val), not present on the parents. This result established the diagnosis of MODY type 2. Clinical identification of patients with MODY remains a diagnostic challenge, especially when familial history is absent. Molecular diagnosis is very important for establishing an individualized treatment and providing a long term prognosis for each type of MODY.


O diabetes da maturidade com início na juventude (MODY) é um grupo heterogêneo de doenças monogênicas que resultam em disfunção das células β, com uma prevalência estimada de 1-2% nos países industrializados. O MODY geralmente ocorre em pacientes não obesos, negativos para autoanticorpos e que apresentam hiperglicemia de leve a moderada. As características clínicas dos pacientes são heterogêneas e dependem do subtipo genético. Pretende-se relatar um caso de MODY tipo 2 causado por uma mutação GKC de novo não descrita anteriormente, demonstrando a importância do diagnóstico diferencial no diabetes pediátrico. Uma menina de 13 anos de idade, saudável e não obesa, foi admitida em um hospital para investigação de episódios recorrentes de hiperglicemia. Ela apresentava níveis altos e persistentes de glicemia de jejum (> 11,1 mmol/L) e não havia histórico familiar de diabetes. O perfil glicêmico sanguíneo revelou glicose de jejum de 124 mg/dL (6,9 mmol/L), com resultados normais no teste oral de tolerância à glicose. O resultado da insulinemia de jejum foi 15 mg/dL (90,1 pmol/L), do HOMA-IR foi 3,9 e da hemoglobina A1c foi de 7,1%. Os autoanticorpos pancreáticos foram negativos. A análise genética identificou uma nova mutação heterozigota missense no éxon 5 do gene GCK c.509G > T (p.Gly170Val), não encontrada nos país. Esse resultado estabeleceu o diagnóstico de MODY tipo 2. A identificação clínica dos pacientes com MODY permanece um desafio diagnóstico, especialmente quando não existe um histórico familiar. O diagnóstico molecular é muito importante para se estabelecer um tratamento individualizado e oferecer um prognóstico de longo prazo para cada tipo de MODY.


Subject(s)
Adolescent , Female , Humans , /diagnosis , Glucokinase/genetics , Mutation, Missense/genetics , Blood Glucose/analysis , Diagnosis, Differential , /genetics , Fasting , Genetic Testing , Heterozygote , Hyperglycemia/blood , Insulin/blood
10.
Indian J Biochem Biophys ; 2014 Apr; 51(2): 115-120
Article in English | IMSEAR | ID: sea-154247

ABSTRACT

White matter disease refers to a set of diseases that affect the white matter of the brain and all of which have different consequences on brain function. Most of the studies have shown that it results from the defects during protein synthesis, with the gene defects in EIF2B1–5, encoding the five subunits of eukaryotic translation initiation factor 2B (eIF2B) α, β, γ, δ and ε, respectively. eIF2B plays a crucial role in protein translation and its regulation under different conditions. The previous studies have shown that mutations in five subunits of eIF2B cause white matter disease of the brain and thus EIF2B is the main culprit in development of white matter disease. In this study, the mutational screening of EIF2B5 gene encoding eIF2Bε was performed for the first time in 12 Kashmiri patients, each having a unique white matter disease condition. We found two novel missense mutations in EIF2B5: c.580A>G, p.Thr194Ala and c.611C>T, p.Ala204Val among the patients with demyelinating disease (multiple sclerosis), but no mutation was found in other patients. In conclusion our study suggests involvement of the EIF2B5 gene in MS development, thus suggesting p.Thr194Ala to be a susceptibility factor for the development of multiple sclerosis.


Subject(s)
Case-Control Studies , DNA/blood , DNA/genetics , Eukaryotic Initiation Factor-2B/chemistry , Eukaryotic Initiation Factor-2B/genetics , Exons/genetics , Genetic Predisposition to Disease , Humans , India , Leukoencephalopathies/genetics , Multiple Sclerosis/blood , Multiple Sclerosis/genetics , Mutation, Missense/genetics , Protein Conformation
11.
Clinics ; 69(1): 15-22, 1/2014. tab, graf
Article in English | LILACS | ID: lil-697717

ABSTRACT

OBJECTIVE: This study aimed to identify novel PITX2c mutations responsible for idiopathic atrial fibrillation. METHODS: A cohort of 210 unrelated patients with idiopathic atrial fibrillation and 200 unrelated, ethnically matched healthy individuals used as controls were recruited. The whole coding exons and splice junctions of the PITX2c gene, which encodes a paired-like homeobox transcription factor required for normal cardiovascular morphogenesis, were sequenced in 210 patients and 200 control subjects. The causative potentials of the identified mutations were automatically predicted by MutationTaster and PolyPhen-2. The functional characteristics of the PITX2c mutations were explored using a dual-luciferase reporter assay system. RESULTS: Two novel heterozygous PITX2c mutations (p.Q105L and p.R122C) were identified in 2 of the 210 unrelated patients with idiopathic atrial fibrillation. These missense mutations were absent in the 400 control chromosomes and were both predicted to be pathogenic. Multiple alignments of PITX2c protein sequences across various species showed that the altered amino acids were highly evolutionarily conserved. A functional analysis demonstrated that the mutant PITX2c proteins were both associated with significantly reduced transcriptional activity compared with their wild-type counterparts. CONCLUSION: The findings of this study associate PITX2c loss-of-function mutations with atrial fibrillation, supporting the hypothesis that dysfunctional PITX2c confers enhanced susceptibility to atrial fibrillation and suggesting potential implications for early prophylaxis and allele-specific therapy for this common arrhythmia. .


Subject(s)
Aged , Female , Humans , Male , Middle Aged , Atrial Fibrillation/genetics , Homeodomain Proteins/genetics , Mutation, Missense/genetics , Transcription Factors/genetics , Amino Acid Sequence , Case-Control Studies , Cohort Studies , Genetic Predisposition to Disease , Genetic Testing , Luciferases, Renilla/genetics , Risk Factors , Sequence Alignment , Transcription, Genetic
12.
Indian J Hum Genet ; 2013 July-Sept ;19 (3): 373-376
Article in English | IMSEAR | ID: sea-156598

ABSTRACT

Von Hippel‑Lindau (VHL) disease is an autosomal dominant hereditary cancer syndrome that predisposes to the development of a variety of benign and malignant tumors, especially cerebellar hemangioblastomas, retinal angiomas and clear‑cell renal cell carcinomas (RCC). We have identified of VHL gene using immunohistochemistry in a patient who was diagnosed for RCC. In order to understand the involvement of mutation in the VHL gene exon 1 was amplified and sequenced (accession number: JX 401534). The sequence analysis revealed the presence of novel missense mutations c.194 C>T, c.239 G>A, c.278 G>A, c.319 C>G, c. 337 C > G leading to the following variations p.Ala 65 Val, p.Gly 80 Asp, p.Gly 93 Glu, p.Gln 107 Glu, p.Gln 113 Glu in the protein.


Subject(s)
Carcinoma, Renal Cell/epidemiology , Humans , Mutation, Missense/etiology , Mutation, Missense/genetics , von Hippel-Lindau Disease/epidemiology , von Hippel-Lindau Disease/genetics
13.
Clinics ; 68(6): 777-784, jun. 2013. tab, graf
Article in English | LILACS | ID: lil-676941

ABSTRACT

OBJECTIVE: The aim of this study was to evaluate the prevalence and spectrum of Nkx2.5 mutations associated with idiopathic atrial fibrillation (AF). METHODS: A cohort of 136 unrelated patients with idiopathic atrial fibrillation and 200 unrelated, ethnically matched healthy controls were enrolled. The coding exons and splice junctions of the Nkx2.5 gene were sequenced in 136 atrial fibrillation patients, and the available relatives of mutation carriers and 200 controls were subsequently genotyped for the identified mutations. The functional characteristics of the mutated Nkx2.5 gene were analyzed using a dual-luciferase reporter assay system. RESULTS: Two novel heterozygous Nkx2.5 mutations (p.N19D and p.F186S) were identified in 2 of the 136 unrelated atrial fibrillation cases, with a mutational prevalence of approximately 1.47%. These missense mutations co-segregated with atrial fibrillation in the families and were absent in the 400 control chromosomes. Notably, 2 mutation carriers also had congenital atrial septal defects and atrioventricular block. Multiple alignments of the Nkx2.5 protein sequences across various species revealed that the altered amino acids were completely conserved evolutionarily. Functional analysis demonstrated that the mutant Nkx2.5 proteins were associated with significantly reduced transcriptional activity compared to their wild-type counterpart. CONCLUSION: These findings associate the Nkx2.5 loss-of-function mutation with atrial fibrillation and atrioventricular block and provide novel insights into the molecular mechanism involved in the pathogenesis of atrial fibrillation. These results also have potential implications for early prophylaxis and allele-specific therapy of this common arrhythmia. .


Subject(s)
Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult , Atrial Fibrillation/genetics , Homeodomain Proteins/genetics , Mutation/genetics , Transcription Factors/genetics , Age Factors , Amino Acid Sequence , Case-Control Studies , Family , Genes, Reporter , Genetic Predisposition to Disease , Luciferases/genetics , Mutation, Missense/genetics , Sequence Alignment
15.
Arq. bras. endocrinol. metab ; 56(9): 614-617, Dec. 2012. ilus, tab
Article in English | LILACS | ID: lil-660275

ABSTRACT

OBJECTIVES: To investigate thyroid peroxidase gene (TPO) mutations in a Chinese siblings with congenital goitrous hypothyroidism (CGH). SUBJECTS AND METHODS: The proband, his sister, and their parents were enrolled. All subjects underwent clinical examination and laboratory tests. Mutation screening of the TPO gene was performed by sequencing fragments amplified from extracted genomic DNA. RESULTS: The siblings were diagnosed as CGH with neurodevelopmental deficits. Two compound heterozygous inactivating mutations were found in the two patients: a frameshift mutation between positions 2268 and 2269 (c.2268-2269 insT) and a missense mutation at c.2089 G>A (p.G667S) of the TPO gene. Their parents, with normal thyroid hormone levels, were heterozygous for mutations c.2268-2269 insT and c.2089 G>A, respectively. The polymorphisms of c.1207 G>T, c.1283 G>C, and c.2088 C>T were detected in the family. CONCLUSIONS: CGH of the Chinese siblings was due to the TPO gene mutations (c.2268-2269 insT and c.2089 G>A). Arq Bras Endocrinol Metab. 2012;56(9):614-7.


OBJETIVOS: Investigar mutações no gene da peroxidase da tireoide (TPO) em irmãos chineses com hipotireoidismo congênito com bócio (HCB). SUJEITOS E MÉTODOS: O probando, sua irmão e seus pais foram analisados. Todos os sujeitos passaram por exames clínicos e laboratoriais. A análise para mutações do gene TPO foi feita por meio de sequenciamento de fragmentos amplificados do DNA genômico extraído. RESULTADOS: Os irmãos foram diagnosticados com HCB e déficits de desenvolvimento neurológico. Duas mutações compostas, heterozigotas, inativadoras foram observadas nos dois pacientes: uma mutação frameshift entre as posições 2268 e 2269 (c.2268-2269 insT), e uma mutação missense em c.2089 G>A (p.G667S) do gene TPO. Os pais apresentaram níveis normais de hormônios da tiroide e eram heterozigotos para mutações em c.2268-2269 insT e c.2089 G>A, respectivamente. Foram detectados polimorfismos de c.1207 G>T, c.1283 G>C, e c.2088 C>T na família. CONCLUSÕES: O HCB dos irmãos chineses foi devido a mutações no gene TPO (c.2268-2269 insT e c.2089 G>A). Arq Bras Endocrinol Metab. 2012;56(9):614-7.


Subject(s)
Adolescent , Female , Humans , Male , Young Adult , Congenital Hypothyroidism/genetics , Goiter/genetics , Iodide Peroxidase/genetics , Asian People/genetics , Frameshift Mutation/genetics , Mutation, Missense/genetics , Pedigree , Polymorphism, Genetic/genetics , Siblings
16.
Clinics ; 67(12): 1393-1399, Dec. 2012. ilus, tab
Article in English | LILACS | ID: lil-660466

ABSTRACT

OBJECTIVE: This study aimed to identify novel GATA5 mutations that underlie familial atrial fibrillation. METHODS: A total of 110 unrelated patients with familial atrial fibrillation and 200 unrelated, ethnically matched healthy controls were recruited. The entire coding region of the GATA5 gene was sequenced in 110 atrial fibrillation probands. The available relatives of the mutation carriers and 200 controls were subsequently genotyped for the identified mutations. The functional effect of the mutated GATA5 was characterized using a luciferase reporter assay system. RESULTS: Two novel heterozygous GATA5 mutations (p.Y138F and p.C210G) were identified in two of the 110 unrelated atrial fibrillation families. These missense mutations cosegregated with AF in the families and were absent in the 400 control chromosomes. A cross-species alignment of GATA5 protein sequence showed that the altered amino acids were completely conserved evolutionarily. A functional analysis revealed that the mutant GATA5 proteins were associated with significantly decreased transcriptional activation when compared with their wild-type counterpart. CONCLUSION: The findings expand the spectrum of GATA5 mutations linked to AF and provide novel insights into the molecular mechanism involved in the pathogenesis of atrial fibrillation, suggesting potential implications for the early prophylaxis and personalized treatment of this common arrhythmia.


Subject(s)
Adult , Female , Humans , Male , Middle Aged , Young Adult , Atrial Fibrillation/genetics , /genetics , Mutation, Missense/genetics , Amino Acid Sequence , Asian People/genetics , Atrial Fibrillation/ethnology , Case-Control Studies , Chi-Square Distribution , DNA Mutational Analysis , Heterozygote , Luciferases/genetics , Pedigree , Sequence Alignment
17.
Arq. bras. endocrinol. metab ; 56(8): 485-489, Nov. 2012. ilus
Article in English | LILACS | ID: lil-660254

ABSTRACT

The hyperinsulinism/hyperammonemia (HI/HA) syndrome is a rare autosomal dominant disease manifested by hypoglycemic symptoms triggered by fasting or high-protein meals, and by elevated serum ammonia. HI/HA is the second most common cause of hyperinsulinemic hypoglycemia of infancy, and it is caused by activating mutations in GLUD1, the gene that encodes mitochondrial enzyme glutamate dehydrogenase (GDH). Biochemical evaluation, as well as direct sequencing of exons and exon-intron boundary regions of the GLUD1 gene, were performed in a 6-year old female patient presenting fasting hypoglycemia and hyperammonemia. The patient was found to be heterozygous for one de novo missense mutation (c.1491A>G; p.Il497Met) previously reported in a Japanese patient. Treatment with diazoxide 100 mg/day promoted complete resolution of the hypoglycemic episodes. Arq Bras Endocrinol Metab. 2012;56(8):485-9.


A síndrome de hiperinsulinemia/hiperamonemia (HI/HA) é uma condição rara, de herança autossômica dominante, que se manifesta por sintomas de hipoglicemia desencadeada por jejum ou refeições de alto conteúdo proteico, juntamente com elevação da concentração de amônia sérica. HI/HA é a segunda causa de hipoglicemia hiperinsulinêmica da infância e é causada por mutações ativadoras no GLUD1, o gene que codifica a enzima mitocondrial glutamato desidrogenase (GDH). A avaliação bioquímica, bem como o sequenciamento direto dos éxons e junções éxon-íntron do gene GLUD1, foi realizada em uma paciente de 6 anos de idade com hipoglicemia de jejum e hiperamonemia. A paciente apresentava uma mutação de novo missense (c.1491A>G; p.Il497Met) em heterozigose, que havia sido previamente relatada em um paciente japonês. O tratamento com diazóxido 100 mg/dia promoveu resolução completa dos episódios hipoglicêmicos. Arq Bras Endocrinol Metab. 2012;56(8):485-9.


Subject(s)
Child , Female , Humans , Glutamate Dehydrogenase/genetics , Hyperinsulinism/genetics , Hypoglycemia/genetics , Mutation, Missense/genetics
18.
Clinics ; 67(supl.1): 69-75, 2012. ilus, tab
Article in English | LILACS | ID: lil-623134

ABSTRACT

Multiple endocrine neoplasia type 2 is an autosomal-dominant hereditary cancer syndrome caused by missense gain-of-function mutations of the rearranged during transfection proto-oncogene, which encodes the receptor tyrosine kinase, on chromosome 10. It has a strong penetrance of medullary thyroid carcinomas and can be associated with bilateral pheochromocytoma and primary hyperparathyroidism. Multiple endocrine neoplasia type 2 is divided into three varieties depending on its clinical features: multiple endocrine neoplasia type 2A, multiple endocrine neoplasia type 2B, and familial medullary thyroid carcinoma. The specific rearranged during transfection mutation may suggest a predilection toward a particular phenotype and clinical course of medullary thyroid carcinoma, with strong genotype-phenotype correlations. Offering rearranged during transfection testing is the best practice for the clinical management of patients at risk of developing multiple endocrine neoplasia type 2, and multiple endocrine neoplasia type 2 has become a classic model for the integration of molecular medicine into patient care. Recommendations on the timing of prophylactic thyroidectomy and extent of surgery are based on the classification of rearranged during transfection mutations into risk levels according to genotype-phenotype correlations. Earlier identification of patients with hereditary medullary thyroid carcinoma can change the presentation from clinical tumor to preclinical disease, resulting in a high cure rate of affected patients and a much better prognoses.


Subject(s)
Humans , Genetic Association Studies , Hyperparathyroidism, Primary/genetics , /genetics , Proto-Oncogene Proteins c-ret/genetics , Thyroid Neoplasms/genetics , Carcinoma, Medullary/congenital , Carcinoma, Medullary/genetics , Genetic Testing , /surgery , Mutation, Missense/genetics , Pedigree , Thyroid Neoplasms/surgery
19.
Rev. méd. Chile ; 139(12): 1601-1604, dic. 2011. ilus
Article in Spanish | LILACS | ID: lil-627596

ABSTRACT

Hypohidrotic ectodermal dysplasia (HED) is a very rare disease characterized by the absence of eccrine glands, dry skin, scanty hair, and dental abnormalities. It is caused by mutations within the ED1 gene, which encodes a protein, ectodysplasin-A (EDA). Clinical characteristic are frontal bossing, saddle nose, pointed chin, a prominent supraorbital ridge with periorbital hyperpigmenta-tion, and anodontia. Those affected show great intolerance to heat. We report the first Mexican 2-year-old boy with an Ala349Thr missense mutation from Tamaulipas, México.


Subject(s)
Child, Preschool , Humans , Male , Ectodermal Dysplasia 1, Anhidrotic/genetics , Ectodysplasins/genetics , Mutation, Missense/genetics , Ectodermal Dysplasia 1, Anhidrotic/pathology
20.
Article in English | IMSEAR | ID: sea-135682

ABSTRACT

Background & objectives Endothelial nitric oxide is a potent vasodilator and impairment of its generation brought about by gene polymorphism is considered a major predictor for several diseases. A single nucleotide polymorphism G894T within exon 7 of endothelial nitric oxide synthase (eNOS-7) gene, resulting in a replacement of glutamic acid by aspartic acid, has been studied as a putative candidate gene for cardiovascular diseases. The pattern of eNOS-7 Glu298Asp variant in the Indian population is poorly known. The present study was planned to determine the prevalence of the variant of this gene among tea garden community in Assam, North-East India with high prevalence of hypertension. Methods Study participants of both sex aged ≥18 yr were recruited randomly from temporary field clinics established in tea gardens of Dibrugarh, Assam. Genomic DNA was extracted from 409 subjects by the conventional phenol-chloroform method. The prevalence of the eNOS exon 7 Glu298Asp variant was determined by polymerase chain reaction and restriction fragment length polymorphism analysis. Results The study population was in Hardy-Weinberg Equilibrium. The frequency of the eNOS GG, GT and TT genotypes was found to be 75, 22 and 3 per cent respectively and did not show any significant difference in gender wise analysis. Interpretation & conclusions Our results showed that the prevalence of the homozygous GG genotype was high (75%) and the rare mutant genotype (homozygous, TT) was 3 per cent in a population at risk with cardiovascular disease. Such population-based data on various polymorphisms can ultimately be exploited in pharmacogenomics.


Subject(s)
Adult , Aged , Aged, 80 and over , Cardiovascular Diseases/enzymology , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/genetics , Chromosomes, Human, Pair 7/genetics , Female , Genetic Predisposition to Disease/epidemiology , Genetic Predisposition to Disease/genetics , Genotype , Haplotypes/genetics , Humans , India/epidemiology , Male , Middle Aged , Mutation, Missense/genetics , Nitric Oxide Synthase Type III/genetics , Pharmacogenetics/methods , Polymorphism, Restriction Fragment Length/genetics , Polymorphism, Single Nucleotide/genetics , Prevalence
SELECTION OF CITATIONS
SEARCH DETAIL